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Abstract

The nonlinear distortion and breakup of a swirling axisymmetric thin inviscid liquid sheet in a void and
at zero gravity is analyzed by means of a reduced dimension approach. Nonlinear steady-state solutions are
presented for various boundary conditions imposed at the nozzle exit. Unsteady solutions describing the
nonlinear breakup of the radially expanding film due to dilational or sinuous modulations at the nozzle exit
are presented. Fluid rings with thin connecting shells are formed due to nonlinear effects and sheet thinning
caused by sheet divergence is found to increase nonlinear breakup lengths and times for both sinuous and
dilational modes. For the case of a swirling annular liquid sheet, comparisons are made with an annular
sheet which is stabilized by a constant gas-core pressure. Here, swirl causes a reduction in breakup lengths
and times. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction and problem formulation

The stability of liquid sheets plays an important role in various technological applications
including spray combustion of liquid fuels in furnaces, internal combustion piston engines, jet
engine combustion chambers and rocket motors (Lefebvre, 1989). The combustion of liquid fuels
in the prescribed applications is frequently achieved through the generation and disintegration of
swirling conical liquid films (Fraser, 1956).

Experimental observations of disintegrating conical liquid sheets have already been described
by York et al. (1953) and Squire (1953) in context with comparisons to their linear temporal

*Corresponding author. Tel.: +1-949-824-3700; fax: +1-949-824-3773.
E-mail address: sirignan@uci.edu (W.A. Sirignano).

0301-9322/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0301-9322(01)00034-9



1708 C. Mehring, W.A. Sirignano | International Journal of Multiphase Flow 27 (2001) 1707-1734

stability analyses of planar sheets in an ambient gas stream. ' Both authors report qualitative and/
or satisfactory quantitative agreement between experimental observations and their theoretical
predictions of film break-up by aerodynamic effects (i.e. wave formation and growth). In par-
ticular, York et al. (1953) note that, in agreement with their analysis, an increase in sheet velocity
leads to more regular wave forms and shorter breakup lengths. Squire (1953) clarifies that his
linear theory for antisymmetrical waves does not give an indication of how rupture of the film
takes place. > A phenomenological description of the breakup process of conical sheets was given
by York et al. (1953). The authors illustrate that aerodynamic wave growth causes rings and holes
to appear on the sheet, resulting in the formation of liquid rings which subsequently disintegrate
solely under the action of capillary forces (Rayleigh breakup). As noted, the prescribed cylindrical
instability begins to operate before aerodynamic wave growth tears the sheet apart. York et al.
(1953) and Squire (1953) stress that their linear analyses break down when unstable waves have
grown to an appreciable size.

Squire (1953) also indicates that sheet breakup for low ambient pressure and/or fuel pressure
does not appear to be related to the instability of wave-motion (i.e. aerodynamic effects). In this
context, the role of capillary waves found near the nozzle exit was later discussed by Taylor
(1959b). Capillary waves on conical sheets and close to the nozzle exit were also observed by York
et al. (1953) and have been studied later by Hashimoto and Suzuki (1991) for the case of dis-
charging planar sheets. In context with aerodynamic wave growth, York et al. (1953) show that
the growth of short-wavelength disturbances required for the generation of small drops can only
be achieved by high relative velocities between the liquid film and the surrounding gas, providing
some explanation to the question why spray producing apparatus generally convert only a small
amount of the energy supplied into surface energy.

In his third paper in a series of three, Taylor (1959b) considers the dynamics of free edges on
liquid sheets with uniform or spatially varying thickness. For conical sheets produced by a swirl
atomizer, Taylor (1959b) reports that its thickness fluctuates greatly where it emerges from the
orifice. The edge of the conical sheet establishes itself, as illustrated, at a radius (i.e. radial distance
from the symmetry axis) well below the value predicted by his ‘edge-dynamics’ theory. The edge
location is given by the location where surface tension forces and inertia forces acting on a fluid
element (at the free edge) are balanced, i.e. where (2¢/p7)"/> = u or We = pi?/(20) = 1. Here, u
denotes the sheet velocity and ¢ represents the mean sheet thickness. Note that on a sheet of
uniform thickness, the left-hand-side of the previous equation corresponds to the velocity of
antisymmetrical waves propagating on the sheet. For the continuous part of the conical sheet,
Taylor (1959b) reports good agreement between the experimentally observed shape and predic-
tions obtained for a water bell with the same ‘discharge’ angle (Taylor, 1959a). However, ex-
perimental predictions for the Weber number We at the breakup point are found to be significantly
larger than the theoretically predicted value We = 1. Taylor explains this discrepancy with the

! Note that Squire (1953) analyzes the sinuous mode of sheet distortion, whereas York et al. (1953) consider the
deformation of only one side of the free liquid sheet, whereby the other side is assumed to remain undisturbed.

2 As reported, the author also studied the symmetric mode of sheet distortion. However, the growth rates for this
mode were found to be significantly smaller than those for the analyzed antisymmetric mode.
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existence of variations in the sheet thickness (dilational waves) which effectively increase the re-
sultant mean velocity of the edge.

Taylor offers two explanations for the origin of the observed thickness variations: (1) a lack of
symmetry in the steady flow in the orifice and (2) oscillations of the air core which is formed
within the orifice. The latter, so Taylor (1959b) states, might explain the appearance of streaks at
nearly right angles to the axis of the experimentally observed liquid cone. As noted, the variations
in thickness will determine the mean value of We at the point where breakup occurs. Note that,
Taylor (1959b) only considers capillary and inertia forces. Gas phase effects were only considered
in context with the prediction of the liquid-bell shape (Taylor, 1959a), where the effect of air drag
was included in the analysis.

In the past, theoretical analyses of the phenomenon of liquid-film breakup were in general
limited to linear planar or annular sheet configurations; the latter with or without swirl
(Panchagnula et al., 1996). The few nonlinear analyses presented on the subject were also limited
to the planar geometry (Mehring and Sirignano, 1999; Kim and Sirignano, 2000), annular sheets,
or liquid bells without swirl (Lee and Wang, 1986, 1989; Ramos, 1992; Mehring and Sirignano,
2000a,b; Panchagnula et al., 1998). Analyses presented by Ramos (1992, 1994, 1995a,b,c,d,
1996a,b,c,d, 1997a,b, 1998, 1999) and Panchagnula et al. (1995, 1996, 1998) did not consider wave
phenomena (linear or nonlinear) on diverging (i.e., continuously thinning) axisymmetric sheets.
With the exception of one analysis (Ramos, 1997a), none considered modulations imposed onto
the sheets at the nozzle exit. However, both divergence and modulation are very important to the
atomization process (e.g., in pressure-swirl atomizers) and are considered within our work. In his
analysis on the effect of liquid flow rate fluctuations on the mass transfer between an annular
collapsing liquid sheet and its gas core, Ramos (1997a) considered modulations of the axial ve-
locity component at the nozzle. However, the author was not interested in the liquid break-up
phenomenon, and although the governing equations were nonlinear, nonlinear effects with respect
to the interface distortion were small. In his analyses, Ramos was primarily interested in heat and
mass transfer between collapsing annular liquid sheets and their reacting gas core, the effect of
fluctuating body forces on this flow configuration and the existence of singularities within the
steady-state liquid phase equations. Previous analyses by Panchagnula and co-workers were linear
with the exception of the work by Panchagnula et al. (1998), the latter being confined to dila-
tionally distoring nonswirling, nondiverging annular sheets subject to time-independent boundary
conditions at the nozzle exit. A theoretical analysis of the nonlinear breakup process for conical
liquid sheets has not been presented so far. The present work provides such an analysis.

In the analysis of thin liquid sheets or films presented here, only capillary and inertia effects
are considered. Subsequently, the term ‘annular’ refers to thin-walled cylindrical liquid columns
with ring-shaped cross-sectional area of constant time-averaged radius along the axial direction.
Sheets or films which resemble hollow cones (although not necessarily geometrically exactly),
1.e., thin walled liquid columns with monotonically increasing or decreasing annular radius of
the ring-shaped cross-sectional area, are named ‘conical’ sheets. Clearly, sheets or films dis-
charging from an annular nozzle and with a monotonically increasing or decreasing annular
radius within the area of interest next to the atomizer are still referred to as being ‘conical’ even
if the annular radius undergoes oscillations further downstream. The latter phenomenon might
occur due to the dynamic exchange of translational or rotational kinetic energy and potential or
surface energy.
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swirling conical sheet

swirl-stabilized
annular sheet

Fig. 1. Schematic depictions of the investigated semi-infinite annular and conical sheet configurations: (a) dilational
modulation and (b) sinuous modulation.

The work presented here is an extension of previous work by the authors on thin planar and
annular liquid sheets (Mehring and Sirignano, 1999, 2000a,b). Considered is a semi-infinitely long
thin swirling liquid film, exiting from an annular nozzle or atomizer as shown in Fig. 1. Axi-
symmetric dilational and sinuous disturbances are considered. Liquid viscosity is neglected and
the sheet is exiting into a void under negligible gravity. The assumption of thin sheets allows the
reduction of the dimensionality of the problem by integrating across the thickness of the sheet.
The same approach has been employed by Ramos (1992) and by the authors for the analyses of
thin planar and annular sheets without swirl (Mehring and Sirignano, 1999, 2000a,b). Only spatial
stability will be of interest here. The spatially periodic temporal instability is not relevant to the
conical sheet with its varying radius. The temporal instability can apply to the annular cylindrical
sheet and for the radially expanding sheet.

2. Governing equations

The governing equations, describing the unsteady motion in an incompressible, inviscid axi-
symmetric liquid sheet under zero gravity and in a cylindrical coordinate system, are given by

10 dv.

— 5, () + 5 =0, (1)
%—I—%%(vfr)#—%(vzvr)—v—é %2—1:, (3)
W Sy Sy, 4)
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where v., v, and vy are the velocity components in the axial (z-), radial (r-) and circumferential (6-)
directions, respectively (see Fig. 1). p and p, denote the pressure and the density of the liquid.

Indicating the outer and inner location of the sheet by r,(z,¢) and r_(z,¢), we define the radial
centerline position and the thickness of the sheet by 7(z,¢) = (r. +r_)/2 and Ar(z,t) =r, —r_.
The pressure and the radial velocity component at the fluid interfaces (p., v, 1) are given by the
following kinematic and dynamic boundary conditions:

B Gri ari
Ut = o + Uz7i§7 (5)
-3/2 —1/2
1 1 o%ry or. 2 o ory 2
= +ol —+— | = — |1 —_— +—11 —-— 6
P+ = D+ G<R17i +R2,i> P+ F O 02 + ( oz ) " + ( . > s ( )

where R; and R, denote the first and second radius of curvature, p, is the pressure of the sur-
rounding gas (p,.+ = 0 here) and ¢ denotes the surface tension coefficient of the liquid. The
subscripts “+”” and “—"" denote values at the outer and inner interface of the liquid sheet. Note
that within the analysis by Mehring and Sirignano (2000a,b), p, - — p, + > 0 in order to stabilize
the nonswirling annular sheet in its undisturbed configuration (‘pressure stabilization’). This is in
contrast to the present analysis of ‘swirl-stabilized” annular sheets in a void. Here, the undisturbed
annular sheet configuration is stabilized by centrifugal forces due to swirl.

We can assume an analytical behavior of the governing equations away from r =0, as a
function of r. Also, assuming that the sheet thickness is small compared to the streamwise dis-
turbance wavelength, it is consistent to consider v, and vy to be nearly constant and v, and p to be
linearly varying with r. It is convenient, therefore, to reduce the problem to a one-dimensional,
unsteady formulation by integrating Eqgs. (1)—(4) over the sheet thickness. This is done by using
Leibnitz’s rule and by considering the previously mentioned velocity and pressure profile ap-
proximations. Introducing averaged quantities ¢, defined by

[ (¢2mr)dr B [ (¢r)dr
[ 2mrdr - FAr

¢ = (7)

one obtains

O0Ar  0(v.Ar) Ar
_l’_ P —
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g+@g=a (12)
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with Ap=p, —p_and p = (p, +p_)/2 given by

_ |G +G 2Ar 0% F
P—‘E[T oz TG =G5z
1 | F F_
+B[*+ Awwﬂ—Fyﬂ, (13)
PF G, — G OAr
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1  F, —F
) [(F+ +F )7 — 5 Ar”, (14)

where D =7 — Ar?/4 and F. and G. are given by

F. =G/, (15)
-3/2
oF\> oFoAr 1 [0dAr\’
— 1+ (=) +——4+- (= . 1
G +<62> 0z 0z +4<az>] (16)

Eqgs. (8)—(16) form a closed system of equations which together with appropriate boundary and
initial conditions govern the nonlinear distortion of thin axisymmetric liquid sheets exiting from a
nozzle or atomizer into a void. Sheet break-up occurs when the independent variable for the sheet
thickness reaches zero value locally. For the subsequent analyses, the above equations have been
nondimensionalized by using the sheet thickness and axial velocity component at the nozzle exit,
i.e. Ary and ©v;, as characteristic length and velocity. The Weber number in the resulting non-
dimensional equations is then given by We = plv_Z?OAro /a.

It has previously been shown by the authors (Mehring and Sirignano, 1999) that, for the case of
a planar sheet, the employed assumptions for the velocity and pressure profiles across the sheet
agree with the lowest-order expansion of the full two-dimensional problem in terms of (y —¥)/4,
where y denotes the direction perpendicular to the undisturbed sheet, y(x, ¢) is the instantaneous
location of the sheet centerline in the y-direction and A is the wavelength of a disturbance in the
x-direction. In other words, for the planar case the reduced-dimension equations are exact in the
limit where the ratio between sheet thickness and A reaches zero.

For steady-state annular liquid membranes with sinuous distortions, the analogy between in-
tegral (control-volume) formulation and rigorous Taylor series expansions has been demonstrated
by Ramos (1996d). The integral representation employed by the authors for nonswirling annular
sheets (Mehring and Sirignano, 2000a,b) follows, as mentioned earlier, Ramos’ analysis for the
steady version of the configuration (Ramos, 1992) but extends it to the unsteady cases of both
sinuous and dilational sheet distortions.

The limitations of the employed formulation, in particular during pinch-off (when short
wavelength disturbances cannot be neglected) have been addressed in this previous work (Meh-
ring and Sirignano, 2000a,b). It is noted however that, despite these constraints, the usefulness of
the approach has been demonstrated conclusively for planar sheets, by comparison with accurate
two-dimensional vortex-dynamics simulations (Mehring and Sirignano, 1999).
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3. Results and discussion
3.1. Annular sheets | modal analysis

Considering swirl-stabilized annular sheets only, * linearization of Egs. (8)—(16) yields

o o o 1
o 0z 0z R

v, (17)

%jL@u: 2{@3h+1 6h+i Gr}’ (18)
or 0z 0z*3  R2 0z R Oz

g—;i‘f‘%—%WOW-FZ—(ZZ)F:82{4%4—4]%4—%}1}7 (19)
str*;zr =0 (20)
R 21

if terms of O(R™3?) are neglected. Here, h,r,u,v and w denote fluctuations of the dependent
variables written in nondimensional form, *i.e. Ar* =1+ h, 7 =R+r, 0" =1 +u, T = vy + 0,
and W* = wy + w, where vy = 0 and wy = 2eR(R*> — 0.25)70'5 is the azimuthal velocity necessary to
stabilize the undisturbed annular sheet with radius R. ¢ is representative for the square root of the
inverse Weber number and is given by ¢ = 1/v/2We. Note that, the characteristic length and ve-
locity used within the nondimensionalization process are the thickness of the annular sheet at the
nozzle exit and its undisturbed axial velocity. Accordingly, R and wy denote ratios between an-
nular radius and sheet thickness or circumferential and axial velocity, respectively. Egs. (17) and
(18) govern the dilational mode and differ from the equations derived previously for pressure-
stabilized annular sheets (Mehring and Sirignano, 2000b) by the additional term 4 /R 0r/0z* within
Eq. (18). This term couples the dilational with the sinuous mode of sheet distortion, latter being
described by Egs. (19)-(21). In Eq. (19), coupling with the dilational mode occurs through the
term (4¢2/R)h. This is in contrast to pressure-stabilized annular sheets (Mehring and Sirignano,
2000a,b) where mode coupling only occurred through the right-hand side of the conservation-of-
mass Eq. (17) if terms of O(R~?) and higher are neglected. Differences in the linearized equations
between pressure-stabilized annular sheets (i.e., sheets which are stabilized by a constant pressure
difference between gas-core and surrounding gas) and swirl-stabilized sheets appear through
additional terms within the governing equation for u# and v, and the existence of an additional
equation for the azimuthal velocity fluctuation w if swirl is present.

According to the coupling between dilational and sinuous modes, and in contrast to pressure-
stabilized nonswirling annular sheets, dispersion relations for the dilational and sinuous modes
cannot be obtained separately for swirl-stabilized annular sheets. Assuming solutions of the form

* A modal analysis of the ‘conical’ case, i.e. annular sheets in a void and with more swirl at the nozzle exit than needed
to stabilize the annular configuration, is not readily available since the corresponding linearized solution for the base-
flow does not separate into classical functions.

4 Superscript “* denotes a nondimensional quantity.
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h = hOei(wt*sz*)’ u= qui(wl*sz*)’ r = ],Oei(wt*sz*)’ v = vOei(wt*sz*)’ and w = WOei(wt*sz*) the overall
dispersion relation for the considered swirl-stabilized annular liquid sheets is given by

(w—k){ [(w_k)2 _432<%+k2>] [(w—k)2 +82k2<]%—k2>}

- %82 (00— k) + 420 } 0, (22)
where wy = 2eR(R*> — 0.25)71/ 2~ 2 (since terms of order R~ have been neglected). For spatially
developing annular sheets exiting from a nozzle or atomizer (considered here), the above dis-
persion relation has to be solved for wavenumber k as a function of w, the latter being the fre-
quency at which harmonic time-dependent fluctuations are imposed at the nozzle exit. Eq. (22)
provides seven solutions for wavenumber k, whereby the & = w solution branch represents an
uninteresting sinuous disturbance which does not move relative to the fluid and which is generated
by fluctuations of the swirl- or azimuthal-velocity w at the nozzle exit. For the parameter range
considered in this paper, the remaining wavenumber solutions k£ describe four predominantly
dilational and two predominantly sinuous waves. The wavenumbers for the ‘sinuous mode’ are
subsequently referred to as /; and /. Here, a wavenumber is said to produce a predominantly
dilational or sinuous wave if the ratio of the amplitudes in / and r, i.e. 2°/#°, pertaining to the
particular wavenumber is significantly larger or smaller than one.

The wavenumbers which produce predominantly dilational waves behave qualitatively the
same as the corresponding purely dilational waves on pressure-stabilized annular sheets, the latter
being governed by Eq. (6) of Mehring and Sirignano (2000b). However, the range of unstable
“dilational” wavenumbers for swirl-stabilized sheets is significantly larger than for the pressure-
stabilized case. For pressure-stabilized sheets with R = 10 and We = 5, instability is found if
o < 0.1; for the similar swirl-stabilized case the instability range extends to w < 0.425. The
maximum growth rate for the swirl-stabilized sheet is about sixty times larger than the maximum
growth rate predicted for the pressure-stabilized sheet in this case. Qualitative differences between
the solutions to Eq. (22) and the solutions to the dispersion relation for dilational waves on
pressure-stabilized sheets (Eq. (6), Mehring and Sirignano, 2000b) are found for large values of w
(e.g. w > 0.6 for R =10, We = 5). However, short-wavelength disturbances resulting from the
imposed sheet modulation render the validity of the employed long-wavelength approximation
questionable in this case. For smaller Weber numbers qualitative differences can be observed even
at smaller forcing frequencies @ (e.g. w < 0.1 for We = 2.1). However, as described below, low
Weber number cases are not subject of the present investigation.

According to Eq. (22) and within the parameter range considered here, exponential behavior
for predominantly sinuous mode disturbances is only possible for large e-values; the bifurcation
value is approximately ¢ = 0.5 (We = 2), but depends on R. This is in strong contrast to pressure-
stabilized annular sheets, where unstable sinuous waves can only be found for ¢ < 0.5 (Mehring
and Sirignano, 2000b). Figs. 2 and 3 illustrate the dependency of wavenumbers /; on forcing
frequency w for predominantly sinuous waves on swirl- and pressure-stabilized annular sheets for
two values of &: ¢ = 1/v/2 and & = 1/+/10. Note that Eq. (22) recovers the dispersion relations for
sinuous and dilational waves on planar sheets (Mehring and Sirignano, 1999) in the limit where R
is infinite.
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Fig. 2. Real values of ‘sinuous mode’ wavenumbers /;, i.e. Re[/;] with dependence on w for R = 10 and We = 1: (solid):
swirl-stabilized case, (dashed): annular pressure-stabilized case.
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Fig. 3. Real values of ‘sinuous mode’ wavenumbers /;, i.e. Re[/;] with dependence on w for R = 10 and We = 5: (solid):
swirl-stabilized case, (dashed): annular pressure-stabilized case.

Analogous to the analyses of planar sheets (Mehring and Sirignano, 1999) and pressure-sta-
bilized annular sheets (Mehring and Sirignano, 2000a,b), group velocity arguments can now be
used to determine which wavenumbers are relevant for the solution downstream from the nozzle
exit where a harmonic modulation at a given forcing frequency w is imposed onto the swirl-
stabilized annular sheet. For sinuous modulations and ¢ = 1/1/10 (< 0.5), Fig. 3 illustrates that
both wavenumber solutions are associated with positive group velocities C(/;) = dw(/;)/d Rell/],
where Re[/;] implies the real part of /;. Accordingly, both wavenumbers will appear downstream
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from the nozzle exit. For ¢ = 1/v/2 (> 0.5) however, Fig. 2 shows that for complex conjugate
values /; (i.e. where Re[/;] and Re[/,] are represented by the same branch), C(/;) < 0, implying that
no one of these waves is part of the time-periodic solution to the considered boundary-value
problem. Similarly, for real values of wavenumbers /; and & = 1/v/2 (> 0.5), only wavenumber /,
is expected to be part of the solution, since /, is associated with waves having negative group
velocities. Note that, for the parameter range considered within the subsequent analyses,dilational
waves on swirl-stabilized and pressure-stabilized annular sheets behave qualitatively the same,
implying that the relevance of certain wavenumbers £; to the linear problem at hand is the same as
for the pressure-stabilized annular sheets described by Mehring and Sirignano (2000b).

Analogous to the analyses of spatially developing planar or pressure-stabilized annular sheets,
wavenumbers /; or k; with C(/;,k;) < 0 are associated with energy transport upstream from in-
finity. According to Sommerfeld’s radiation condition these wavenumbers have to be excluded
from the solution to the considered boundary value problem.See, for example, Mehring and
Sirignano (1999). Later, calculations will be presented for the annular sheet as a special case of the
conical sheet.

The use of group-velocity arguments to exclude certain wavenumbers for the solution of the
pure boundary-value problem might need reconsideration within the analysis of the corre-
sponding initial- and boundary-value problem where group velocity information is used to de-
termine the number of boundary conditions to be specified at the nozzle exit (Mehring and
Sirignano, 2000b). This is particularly true for low Weber number cases where transient effects
might cause the sheet to become absolutely unstable.

3.2. Radially expanding annular sheets

We now consider the uniform radial expansion of an annular sheet due to excess swirl. In other
words, a cylindrical swirling liquid film is analyzed for which the amount of swirl initially present
exceeds the amount needed to stabilize the film at its initial annular radius. The generation of a
radially expanding cylindrical liquid layer, as considered here and generally referred to as film
blowing, is one of the basic elements of polymer processing (Tadmor and Gogos, 1979). In this
context, the prescribed process of film expansion due to excess swirl can be categorized as inertial
(or impulse) expansion which is in contrast to the more frequent use of an increased gas pressure
within the cavity formed by the annulus in order to generate the expansion.

For annular sheets with radial displacement only and without sheet disturbances in the axial
direction, we have v; = 0 and 9(...)/0z = 0, so that Egs. (8)—(12) can be rewritten as follows:

dAr Ar_

a7

ds, 20 7 Tg”
[ A
doy _ wo

a7

dr

7:U_r7

dt
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whereby an equation for 7, has no longer to be solved. The above system of equations can be
simplified to yield

Ar7 = ey, (23)
Vg7 = e

; (24)
d’7 26 1 &
=12 25
de? P el + 7’ (25)

where the approximation 7 — Ar?/4 ~ 7 has been made. The constant values e, and e, in

Egs. (23) and (24) are determined by the initial geometry of the cylindrical sheet and the angular
momentum or swirl imposed at ¢t = 0. Eq. (25) can be used to obtain the instantaneous annular
radius of the film once its initial value 7(# = 0) and its initial time-rate of change d7/d¢(¢ = 0) have
been specified. Eq. (25) shows that, depending on the initial swirl prescribed by e,, the initial
geometry prescribed by e, and the liquid properties (i.c., surface tension coefficient ¢ and density
p1), sheet collapse is possible, whereas continuous sheet blowout is not possible.

It can be shown that an oscillatory behavior for the temporal variation of 7 occurs around the
equilibrium location 7, = We!/*7, (assuming d7/d¢ = 0 initially), whereby the swirl Weber number
We, is formed by 7y(t = 0), Ar/2(t =0), o and p,. If We, < 1, radial acceleration of the sheet is
initially inwards (towards 7); if We, > 1, the sheet accelerates radially outwards towards its
equilibrium position at 7. In the former case, sheet collapse, i.e. the formation of a “full” cy-
lindrical jet, might occur, depending on the prescribed problem parameters as well as on 7y and
dr/dt at t = 0. On the other hand, sheet instability leading to continuous radial sheet blowout is
not possible for swirling annular sheets subject to inertia and capillary forces only. In contrast, a
nonswirling annular sheet, stabilized at 7, by a constant pressure difference between inner gas core
and the surrounding gas phase, is neutrally stable and any deviation from the neutral stability
point will lead to either sheet collapse or radial sheet blowout.

For a swirling annular sheet with inertia and surface tension only, energy is conserved with
energy exchange between potential (surface) energy and kinetic energy (due to angular and radial
momentum). However, with an imposed pressure difference, energy exchange with the ambient
gas takes place, which might render the sheet unstable. For the latter case, one should note the
similarity to the observations for a steady-state spatially developing free falling liquid curtain with
a pressure difference across the sheet made by Finnicum et al. (1993) for the planar case and by
Ramos (1997b) for the axisymmetric annular case.

Similarly to the prescribed oscillatory behavior of cylindrical liquid layers with excess swirl, the
spatial development of annular sheets exiting from a nozzle or atomizer with excess swirl, is
characterized by sheet divergence close to the nozzle exit and, if sheet break-up does not occur,
subsequent oscillatory variations of the annular radius in the downstream direction. With regard
to the diverging part of the sheet directly at the nozzle exit, we subsequently present a spatial
analysis of swirling ‘conical’ sheets.

Further details on the analysis of film blowing under various conditions and for inviscid and
viscous liquid layers can be found in the book by Yarin (1993). The stability analysis of peri-
odically disturbed infinite annular sheets subject to film blowing (i.e. uniform radial sheet ex-
pansion) is another interesting problem which might provide some insight with regard to the
influence of sheet attenuation on sheet stability. Although such an analysis is not presented here, it
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is expected that, for large Weber numbers or large sheet velocities, similar results will be observed
as for the modulated semi-infinite conical sheets analyzed below.

3.3. “Conical sheets” | steady-state analysis

Steady-state nonlinear solutions for the pure boundary-value problem of a swirling annular
film exiting from a nozzle or atomizer have been obtained for various sets of boundary conditions
at the nozzle exit and by employing a fourth-order Runge-Kutta integrator for a system of or-
dinary differential equations governing Ar, 7 and their spatial derivatives in z.

Neglecting the time-dependence in Egs. (8) and (11) and employing the kinematic condition
Eq. (12), i.e., d7/dz = 7, /7;, the conservation of mass and the conservation of angular momentum
are given by

Ar

S
=
Il

z Ci,
c

~I
<

<
I

2

where ¢; and ¢, are proportional to the constant mass flow rate and the constant angular mo-
mentum, respectively. Using the prescribed kinematic condition and the above equations to ex-
press 7, 0, and 7y in Eqgs. (9) and (10) (with 0(...)/0z = 0 and Ap and p expressed by Eqgs. (13)-
(16)), the following system of first-order ordinary differential equations can be formulated:

dr
= 2
ds d%
e i @7
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Clearly, assuming G+ = 1 reduces the order of the highest spatial derivative of 7 in Eq. (9) from
three to two. Note that the pressure term —1/p,0p/0z) appearing on the right-hand side of Eq. (9)
is obtained from Eq. (13) where 0°#/0z* disappears if Gy = 1 is assumed.

For the general case (G+ # 1, Fi. # 1), boundary conditions were specified for the nondimen-
sional sheet thickness Ar* = b; and the nondimensional radial distance of the sheet centerline
from the axis of symmetry 7 = by as well as their first and second spatial derivatives
(dAr*/dz* = by, d*Ar* /dz*? = by, d7*/dz* = bs, d°F*/dz*> = bg) at the nozzle exit. For the simpli-
fied case with G. = F. = 1, a boundary condition for d* /dz*2 ._o 1s not required due to the
prescribed reduction of the highest-order spatial derivative in 7 in this case. For the general case,
the boundary condition for d*7* /dz*? at z* = 0 was specified to take the value obtained from the
corresponding simplified analysis (with G. = Fy = 1).

To solve the general and simplified steady-state problem, the axial and circumferential velocity
components (-, and vy,) or alternatively the mass flow rate (i.e., ; ¢Arory) and the swirl at the
nozzle exit (i.e., vy o) also had to be specified.

This implies that eight boundary conditions are to be specified at the nozzle exit, if the general
steady-state problem is to be solved by integrating the above system of ODE:s for increasing values
of z* starting from the nozzle exit at z* = 0. Similar steady-state analyses were also presented by
Yarin (1993) for the case of swirling liquid membranes and by Ramos (1992) for nonswirling thin
liquid sheets. As within the prescribed analysis, the latter authors specified boundary conditions
only at the location where the sheet exits the nozzle or atomizer.

It is emphasized here that, in general, boundary conditions should not only be specified at the
nozzle exit. In fact, the number of boundary conditions to be prescribed at the inflow and outflow
planes of the considered spatial domain will depend, in analogy to the consideration and rejection
of certain wavenumbers within the previous section, on the group velocities or energy propagation
characteristics associated with the (capillary) waves travelling along the sheet. A more detailed
description regarding the specification of boundary conditions and selection of relevant wave-
numbers by means of group velocity arguments of the possible wave systems can be found
elsewhere (Mehring and Sirignano, 1999, 2000b).

Clearly, nonlinear steady-state solutions obtained by specification of boundary conditions at
the upstream boundary only are not guaranteed to reflect accurately the physical problem at
hand. Nevertheless, it can be shown that for the cases presented here, the solutions to the non-
linear steady-state problem with boundary conditions at the nozzle exit only, provide ‘reasonable’
initial-conditions for the analysis of steady-state diverging sheets with superimposed unsteady
modulations enforced at the nozzle exit. Also, referring to the work by Entov et al. (1980), Yarin
(1993) noted that the effect of boundary conditions at the far end of a viscous liquid film appears
to a great extent only in a narrow boundary layer and does not propagate upstream for fairly
large Reynolds numbers.

Nonlinear numerical solutions of the unsteady equations (as described later) using the pre-
scribed steady-state solutions as initial conditions showed that, for larger Weber numbers, the
prescribed steady-state solutions are in fact time-independent and stable with regard to distur-
bances generated by numerical error. For the lower Weber number range, small-amplitude short-
wavelength disturbances were found within the steady-state solution for the axial velocity of the
diverging sheet near the nozzle exit. In the corresponding numerical solution of the unsteady
problem, these disturbances are propagated downstream at decreasing amplitudes. The solution
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relaxes towards a truly steady state with spatial variations of Ar,7 %, and w very close to the
predicted steady-state solution but without oscillations in z.

Also, for large Weber number values, transient numerical simulations of the nonlinear unsteady
problem given by an initially annular swirl-stabilized sheet with gradually increasing swirl at the
nozzle exit (towards a fixed value) provided the same steady-state solutions near the orifice as
those obtained by solution of the corresponding steady-state problem. For smaller Weber num-
bers, oscillations in # predicted by the steady-state solutions do not appear in the quasi-steady-
state solutions observed within the transient simulations and at the nozzle exit. However, the
latter agree with the truly time-independent solutions obtained from nonlinear numerical simu-
lations using the ‘steady-state’ solutions obtained from Egs. (26)-(30) as initial conditions.

Fig. 4(a)—(d) illustrate solutions to the nonlinear steady-state problem for various boundary
conditions. For the cases with b, = b3 = bs = 0, the radial distance of the film from the axis of
symmetry decreases monotonically resulting in sheet collapse if the angular momentum at the
nozzle exit is smaller than the amount needed to stabilize the undisturbed annular sheet with
radius 7 and thickness Ar. In this case, the centrifugal forces cannot compensate for the capillary
pressure which acts towards a minimization of the surface area of the swirling film. If the angular
velocity at the nozzle exit exceeds the critical value which stabilizes the annular configuration, i.e.,

100 100

0 : 0 :
0 250 500 0 500 1000
(@ z* (b) z*
100 100
r* r*
50 - A 50 - A
\
0 \v\ 0 I
0 250 500 0 250 500
(c) z* (d) z*

Fig. 4. Steady-state solutions for We = 1000, by = 1,5, = b3 = 0,b4 = 10 and bs = 0 (cases a—) or bs = —0.1 (case d)
[G. = F. = 1]. The nondimensional mass flow rate is ¢; = 7, and the nondimensional angular momentum is ¢, = k¢,
where ¢ corresponds to the amount of swirl required to stabilize the undisturbed annular sheet, i.e., 20 = 70g:
(a)k=10,®)k=2,(c) k=0.1 and (d) k = 1.
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Uy = \/ 2/[We(1 — Ar2/(473))], the radial centerline-position of the film undulates in the down-
stream direction of the nozzle according to the energy transfer between surface energy and energy
stored within the swirling motion of the sheet. These sheets are often described as ‘conical’ in the
engineering practice although they can deviate substantially from a true conical shape.

3.4. Swirling annular and “conical” sheets modulated at the nozzle exit

Nonlinear unsteady numerical solutions for thin swirling annular or ‘conical’ liquid sheets, with
or without harmonic sinuous or dilational modulations enforced at the nozzle exit, have been
obtained by using the ‘angled-derivative’ scheme described by Richtmyer and Morton (1967).
Only larger Weber number cases (i.e., We > 2) are considered, as transient effects are found to
dominate the distortion and sheet break-up process at lower Weber number values. The latter has
already been observed within the analysis of pressure-stabilized annular sheets (Mehring and
Sirignano, 2000b).

In the “inviscid” simulations presented here, small amounts of viscosity were included in order
to prevent the development of finite-time singularities within the inviscid reduced-dimension
analysis (‘inviscid-slice model’). A detailed discussion/description of this phenomenon, the in-
cluded viscous term, and the limitations of a pure inviscid model have already been provided by
Mehring and Sirignano (2000a,b) using the same numerical model. These references also include a
review of previous work on liquid sheets considering the effects of liquid viscosity.

Initial conditions for the numerical simulations were chosen according to the steady-state so-
lution illustrated in Fig. 4(a) or the similar case, but with exactly enough swirl to stabilize the sheet
in its annular configuration as it exits from the nozzle.

For both swirl-stabilized annular and ‘conical’ sheets, the number of boundary conditions at
the nozzle exit was chosen according to the number of wavenumbers /; or k; with associated
positive group velocities, relevant to the linear boundary-value problem analysis presented earlier
for swirl-stabilized annular sheets. Boundary conditions at the nozzle exit for nondimensional
sheet thickness Ar*, radial sheet-centerline location 7, and the velocity components in the axial,
radial and circumferential direction were chosen according to the prescribed steady-state solu-
tions, but with additional harmonic variations of the axial or transverse velocity components
according to 7}, = 4.,[1 —e™"/"]sin(2nt* /T, 4 ), where Tj, is the nondimensional time-period
of the harmonic forcing and A, and A4, denote the nondimensional amplitudes of the axial
or transverse velocity modulation, respectively; the superscript “*’ denotes a nondimensional
quantity.

Additional numerical boundary conditions required to solve the unsteady problem were
specified for 9*Ar* /0z*? and 0’7 /0z*? with values corresponding to the imposed steady-state initial
conditions. Note however that the use of 0*Ar*/0z** =0 and 0% /0z** = 0 at z* = 0 (already
employed as numerical conditions within the analysis of pressure-stabilized annular sheets) in-
stead of the prescribed second-order derivatives, does not yield significant differences within the
solution of the transient problem with steady-state limit-cycle solution; the latter being analyzed
in connection with the steady-state problem described in the previous section.

In summary, for the analysis of the considered unsteady problem, 5 boundary conditions and 2
numerical conditions were specified at the nozzle exit, whereby the specification of v effectively
determines 07 /0z* in the steady-state case without sheet modulation. Within the solution of the
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unsteady equations, a boundary condition for 0Ar*/0z* (as specified within the steady-state
analysis of the previous section) was not imposed; however, numerical simulations show that in
the unsteady transient simulations with steady-state limit-cycle solution, 07} /0z*|.._, = 0 and
O0Ar* J0z*|,._, = —0r"/0z*|._, = 0 as expected from analytical solution to the corresponding
steady-state problem.

Figs. 5 and 6 compare swirling annular and conical sheets subjected to the same dilational
(Fig. 5) or sinuous (Fig. 6) modulation at the nozzle exit. Both cases illustrate how sheet thinning
in the conical case yields longer break-up lengths compared to the corresponding annular cases
(with only enough swirl to maintain the annular geometry). Sheet divergence results in larger
liquid surface area, implying that energy density of the disturbance imposed onto the sheet be-
comes smaller in the diverging case. Consequently, absolute disturbance amplitudes downstream
from the nozzle are smaller in the diverging case. The characteristics of the nonlinear distortion of
sinusoidally or dilationally modulated swirling axisymmetric annular sheets with fluid agglom-
eration into rings and thin shells connecting them is not fundamentally altered by the thinning of
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Fig. 5. Annular and “‘conical” liquid films dilationally modulated at the nozzle exit [G. = F. = 1]. Initial conditions
are the steady-state solutions (— — —) for We =1000,b1 = 1,b, = b3 = bs = 0,b, = 10 with angular momentum
¢y = k7;vg, and k = 1 (annular case) or k£ = 10 (“conical” case). The modulation is specified by 4. = 0.05 and 7, = 25.
Solutions are displayed at: (a) t* = 200 (“conical” case), t* = T, = 163.69 (annular case), and (b) * = 140.
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Fig. 6. Annular and “conical” liquid films sinusoidally modulated at the nozzle exit [G: = F. = 1]. Initial conditions
are the steady-state solutions (— — —) for We = 1000,b1 = 1,b, = b3 = bs = 0,b, = 10 with angular momentum
¢y = k7;vy, and k = 1 (annular case) or k£ = 10 (“conical” case). The modulation is specified by 4, = 0.1 and 7, = 25.
Solutions are displayed at +* = 200 (“‘conical” case) and #* = T;, = 188.98 (annular case).

the sheet in the ‘conical’ case. This is particularly true for the dilationally modulated sheet il-
lustrated in Fig. 5. It should be noted however, that in the ‘conical’ case of Fig. 5 sheet divergence
and sheet thinning cause stronger coupling between the modulated dilational and excited sinuous
mode (causing larger sinuous sheet disturbances) than in the corresponding annular case. For the
case with modulations of the transverse velocity component (Fig. 6), higher harmonics are ob-
served in the annular case, whereas in the similar case with excess swirl (i.e., ‘conical’ case), these
harmonics do not appear on the diverging sheet. Sheet divergence is found to significantly in-
fluence breakup times and breakup lengths. For the dilationally and sinusoidally modulated
swirling (nondiverging) annular sheets depicted in Figs. 5 and 6, sheet breakup occurred at
T, = 163.69 and T;, = 188.98 with breakup lengths /, = 117.36 and [, = 137.2, respectively. For
the similar case with excess swirl, resulting in a diverging sheet with monotonically decaying sheet
thickness in the steady solution, sheet breakup was not observed for * < 200.

Sheet divergence, breakup time and breakup length for the general case with Gy # 1 vary
slightly from those obtained for the case illustrated in Figs. 5 and 6 with G. = 1. However, the
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prescribed characteristics of the nonlinear sheet distortion due to sinuous or dilational modula-
tions are valid independently of the assumptions employed for G...

Sheet thinning (produced by excess swirl) results (for sinuous modulations) in a weaker cou-
pling of sinuous and dilational modes (Fig. 6) and (for sinuous or dilational modulations) in a
delay of the appearance of higher harmonic dilational waves which lead to local sheet pinch-off
(Figs. 5 and 6). It is agreed here that the shortest of the produced wavelengths cannot be accu-
rately predicted by the employed model. Nevertheless, it is claimed, and it has already been shown
for planar sheets (Mehring and Sirignano, 1999), that the evolution of the sheet until pinch-off
(including some higher-harmonic effects) is properly predicted qualitatively and quantitatively
within some margin of error.

Parametric studies on the effect of Weber number, swirl number > and disturbance amplitudes
A,. on break-up time and break-up length of dilationally and sinuous modulated annular or
‘conical’ sheets have been conducted for the general case with G # 1 and for sheets with 7 = 10
at the nozzle exit, Weber numbers We = 150, 500, 1000, or 2000 and swirl numbers £ = 1,5, 10, 20.
The following four base cases were considered:

1. We=1000,k = 1,4. = 0.025,4, =0,T, = 15,7, = T, /4,0 = 0,

2. We=1000,k = 1,4, =0.02,4, =0, T, = 100, T, = T, /4,0 = 0,

3. We=1000,k =1,4.=0,4,=0.1,T, =25, T, = T, /4,0 = m/2, and
4 We=1000,k =1,4. = 0,4, =0.1,T, = 100, T, = T,, /16,0 = m/2.

Cases 1 and 2 correspond to dilational modulations which result, according to the prescribed
linear analysis, in unstable sheet behavior. Cases 3 and 4 correspond to configurations already
considered in the analysis of pressure-stablized annular sheets with sinuous modulations enforced
at the nozzle, where they resulted in stable and unstable sheet behavior, respectively. Note that
according to the linear analysis presented earlier, and within the parameter range of interest, swirl-
stabilized annular sheets with sinuous modulations enforced at the orifice are stable, as long as
We < 2 (approximately).

Tables 1-5 show the results of the parametric studies on Weber number and swirl number for
the case with G. # 1 and F. # 1. Depicted are break-up lengths /, and break-up times #, for the
four base cases 1-4 and their variations which are obtained by changes in Weber number and/or
swirl number. Each table also illustrates the break-up length and time for a planar sheet © with the
same swirl number and modulation enforced at the nozzle as for the corresponding base case.

Steady-state solutions and transient simulations for time-independent conditions at the nozzle
exit showed that higher swirl numbers k result in larger cone-angles and an increase in the
thinning rate of the sheet in the downstream direction. The analysis of sheets which are modulated
at the nozzle exit showed that an increase in the thinning rate results in smaller absolute amplitude
disturbances downstream for the same amplitude at the nozzle. Consequently, the appearance of
nonlinear effects (i.e., higher harmonic disturbances) is (in general) delayed resulting in longer

5 Here, the term ‘swirl number’ refers to the ratio k of swirl ¢, imposed at the nozzle exit to the amount of swirl ¢,
necessary to stabilize the sheet in its annular configuration, i.e. ¢; = ke .
® Planar sheets are approximated here by swirl-stabilized annular sheets with an annular radius 7 = 10* at z* = 0.
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Table 1

Swirl-stabilized annular (k = 1) and ‘conical’ (k = 10, 20) sheets with modulations of the axial velocity component at the
nozzle exit, i.e., 7' = A.[1 — e /5]sin(2nt* /T, + o), for various Weber numbers We; R = 10,4, = 0.025,T, = 15,
T, = T,/4, 0 = 0; t,, I, = nonlinear break-up time and length; ‘planar’ refers to a case with very large radius of curvature

(i.€., R = 10* k = 1) and with the same modulation enforced at z* = 0;

Planar k=1 k=10 k=20

We = 150

ty 171.1

Iy 151.5
We = 500

ty 175.6 181.3 221.5 304.2

Iy 156.4 162.7 208.2 284.6
We = 1000

ty 164.3 170.2 180.3 2717.1

Iy 146.1 152.1 164.2 264.7
We = 2000

ty 154.2 155.1 163.5 210.0

Iy 136.7 137.7 146.8 194.3

Table 2

Swirl-stabilized annular (k¢ = 1) and ‘conical’ (k = 5, 10) sheets with modulations of the axial velocity component at the
nozzle exit, ie., o.° = A.[1 —e /5] sin(2nt* /T, + o), for various Weber numbers We; R = 10,4, = 0.02, T, = 100,

T, =T,/4,0 = 0; t,, I, = nonlinear break-up time and length; ‘planar’ refers to a case with very large radius of cur-
vature (i.e., R = 10*,k = 1) and with the same modulation enforced at z* = 0; ‘nb’ indicates no break-up within the

simulated time frame (0 < * < 1050);

Planar k=1 k=5 k=10

We = 500

t 1025.7 768.4 783.0 nb

Iy 917.6 664.2 698.9
We = 1000

t 1012.1 852.4 830.0 976.6

Iy 905.3 748.4 735.2 902.0
We = 2000

t 1002.9 905.6 870.5 938.2

Iy 897.6 801.6 770.9 845.0

break-up times and larger break-up lengths. Tables 1-5 show that this is particularly true for
sinuous modulated sheets (i.e. modulation of the transverse velocity at the nozzle exit). Also, for
large enough thinning rates (i.e. swirl numbers), sheet break-up might not occur, even though
break-up was predicted at lower thinning rates under the same forcing conditions. The prescribed
effect of sheet divergence or swirl-number on break-up lengths and times has been observed for all
the considered Weber numbers, i.e. We = 500, 1000 and 2000. ‘Conical’ sheets with lower Weber
number values have not been analyzed due to small-amplitude short-wavelength oscillations
within the corresponding steady-state solutions (as described earlier) used as initial conditions for
the transient simulations.
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Table 3

Swirl-stabilized annular (k = 1) and ‘conical’ (k = 10, 20) sheets with modulations of the transverse velocity component
at the nozzle exit, i.e., 3" = 4,[1 — /%] sin(2nt* /T, + ), for various Weber numbers We; R = 10,4, = 0.1, T, = 25,
T, =T,/4,0 =7n/2; t,,l;, = nonlinear break-up time and length; ‘planar’ refers to a case with very large radius of
curvature (i.e., R = 10* k = 1) and with the same modulation enforced at z* = 0; ‘nb’ indicates no break-up within the

simulated time frame (0 < ¢ < 550);

Planar k=1 k=10 k=20
We = 150
% 115.5
Iy 87.8
We = 500
% 157.5 131.8 534.7 nb
Iy 130.3 105.1 476.4
We = 1000
% 175.1 146.3 297.7 nb
Iy 160.3 119.8 273.0
We = 2000
% 196.7 163.7 227.2 nb
Iy 182.1 137.3 201.8
Table 4

Swirl-stabilized annular (k = 1) and ‘conical’ (k = 10, 20) sheets with modulations of the transverse velocity component
at the nozzle exit, i.e., 5, = 4,[1 — e™"/%]sin(2nt* /T, + o), for various Weber numbers We; R = 10,4, = 0.1, T, = 100,
T, =T,/16,00. = 1/2; t,l, = nonlinear break-up time and length; ‘planar’ refers to a case with very large radius of
curvature (i.e., R = 10* k = 1) and with the same modulation enforced at z* = 0; ‘nb’ indicates no break-up within the

simulated time frame (0 < * < 600);

Planar k=1 k=10 k=20

We = 500

% 494.1 313.3 nb nb

Iy 479.4 299.4
We = 1000

% 437.9 320.3 nb nb

Iy 423.4 307.1
We = 2000

t 434.8 332.3 nb nb

Iy 421.0 319.8

The simulations illustrated in Tables 1-4 also showed that break-up lengths and times for swirl-
stabilized modulated annular sheets are (with the exception of base case 1) smaller than those
predicted for the corresponding planar cases. On the other hand, break-up lengths and times for
similar diverging sheets (with excess swirl at the nozzle exit) are generally (i.e., with the exception
of base case 2) significantly greater than for the planar case. This is found to be particularly true
for larger swirl numbers k and sinuous mode simulations.

We shall now address the effects of Weber number on break-up length and time for the cases
illustrated in Tables 1-4. For dilational sheet modulations, the effect of Weber number changes on
Iy and #, is determined by the relative importance of the radius of curvature in the main flow
direction R, and the radius of curvature in the corresponding perpendicular direction R;.
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Table 5

Swirl-stabilized annular (k = 1) and ‘conical’ (k = 10, 20) sheets with modulations of the transverse velocity component
at the nozzle exit, i.e., 7" = 4,[1 — e/ sin(2nt* /T, + &), for two forcing periods T,; We = 1000,R = 10,4, = 0.5, T, =
T,/4 or T,/16,00 = /2

k=1 k= 10 k=20
T, =25
e 30.8 69.1 79.5
Iy, 18.6 65.1 55.1
T, =100
e 59.6 127.4 341.7
Iy, 19.9 118.1 344.4

#Sheet collapse where ¢, and /. are the nonlinear collapse time and length.
®Sheet break-up where #, and /,, are the nonlinear break-up time and length.

By linear analysis, capillary effects on swirl-stabilized annular sheets resulting from R; are
stabilizing whereas those resulting from R, are destabilizing to the sheet. This implies that, for
R, > R, increasing We leads to smaller (stabilizing) surface tension forces and larger disturbance
amplitudes generated by the enforced sheet modulation. This can be observed for the planar,
annular and ‘conical’ cases presented in Table 1, where increasing Weber number values results in
a decrease of break-up length /,,. The same arguments can also be used to explain the decrease in
Iy, with increasing We-values for planar and diverging ‘conical’ (i.e., £ = 10) sheets illustrated in
Table 2. However, for the annular case and the ‘conical’ case with £k = 5 (i.e., only slightly di-
verging sheet) shown in Table 2, R, < R; along the sheet so that the destabilizing capillary effects
associated with R, dominate, leading to an increase in /, with an increase in Weber number We.
The described behavior is not only a result of the relative importance of R, and R, but also due to
a decrease in the thinning rate of the sheet if We is increased and k is kept constant. As pointed out
earlier, increased sheet thinning results in larger break-up times and lengths if the same modu-
lation is imposed at the nozzle exit.

For sinuous sheet modulations, sheet break-up occurs due to nonlinear coupling with the di-
lational mode. Here, the dependency of nonlinear breakup length and time on Weber number is
greatly influenced by the linear and nonlinear mode coupling and the linear and nonlinear dila-
tional mode behavior. The former decreases with increasing Weber number (and annular radius).

For long-wavelength sinuous mode disturbances on planar sheets (see Table 4), the dependency
of [, on We is dominated by the (long-wavelength) dilational mode distortion generated by the
sinuous modulation, i.e. as We is increased, /, decreases. For planar sheets with sinuous distur-
bances of shorter wavelength (see Table 3) and for the annular cases listed in Tables 3 and 4, the
nonlinear coupling between the modulated sinuous and excited dilational mode dominates,
leading to an increase in breakup length with increasing Weber number.

For diverging (‘conical’) sheets with low frequency sinuous modulations (see Table 3, £ = 10),
[, decreases with an increase in We. The same observation has already been made for the dila-
tionally modulated ‘conical’ sheets of Table 2 with £ = 10 and can be attributed to a decrease in
the thinning rate of the steady sheet resulting from an increase of We at the same swirl number k.

Increased sheet divergence leads to increased sheet thinning and smaller droplets once the thin
ligaments detached from the sheet do disintegrate further (e.g. according to Rayleigh’s mechanism
for jet break-up). However, for purely capillary sheet break-up and diverging sheets, the increase
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in the second radius of curvature and the prescribed decrease in disturbance amplitude renders the
sheet more stable. This is in contrast to the case where aerodynamic effects dominate the sheet
breakup. Here, sheet divergence leads to an increase in surface area onto which the surrounding
gas can impose forces or transfer energy. Within the present analysis of capillary waves on di-
verging annular sheets, energy is only transferred onto the sheet at the nozzle exit.

The simulations presented here indicate that, in general, an increase in the thinning rate or
cone-angle of diverging annular sheets resulting from an increase in the angular momentum or
swirl at the nozzle exit, leads to smaller disturbance amplitudes and longer break-up lengths if the
same modulation is forced onto the sheet at the nozzle exit. These break-up lengths and times
might be significantly larger than those observed for the corresponding modulated planar sheets.

The effect of disturbance amplitudes 4, and 4, on break-up length /, and break-up time #, has
also been investigated. The corresponding results illustrated in Table 6 indicate that an increase in
the disturbance amplitude of the velocity modulation imposed at the nozzle exit will lead to a
decrease of /i, and #, for both sinuous and dilational modes.

Due to differences in the configuration, direct comparison of experimental data to the present
results is not possible. For example, modulation at the nozzle exit has not been quantified and a
precise description of the capillary wave behavior has not been given within prior experimental
work. Swirling conical liquid sheets subjected to the effect of piezoelectric transducer modulation
have been studied by Chung et al. (1998). However, for the case of interest, i.e. swirling conical
sheets of low viscosity liquids in a gas of negligible density, no data was provided. Also, from the
data provided by Chung et al. (1998), it is not known what precise waves were generated by the
intrinsic disturbances generated by the pressure-swirl nozzle nor by the piezoelectric transducer
whose sinusoidal input signal is known. (Note that, even when forcing the sheet harmonically at a
single frequency multiple waves with different wavelengths will be generated.)

Apart from the presence of an ambient gas (whose effect might be negligible for small enough
density ratios), previous experimental work on swirling conical sheets focused, in general, on
droplet size distribution rather than sheet distortion characteristics before and up to break-up

Table 6

Swirl-stabilized ‘conical’ sheets with modulations of the transverse velocity component at the nozzle exit according to
base cases 1-4; We = 1000, R = 10,k = 10; #,, I, =nonlinear break-up time and length; ‘nb’ indicates no break-up for
t* < t; (t, = simulation time)

(1) 4. =0.01 A, = 0.025 4. = 0.05
t ¢ <400 180.32 97.87
Iy nb 164.17 81.45
) 4. =0.01 4. =0.02 4. =0.05
t t* <1200 829.96 451.64
Iy nb 735.15 351.30
) 4. =0.05 4. =0.1 4. =025
t 451.64 297.73 103.59
Iy 351.30 273.04 78.40
@) 4. =0.05 4. =0.1 4. =025
t t* <600 t* <600 464.11

Iy nb nb 461.36
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(Ballester and Dopazo, 1996; Schmidt and Sojka, 1999). Clearly, whereas measurements of film
locations, i.e. sheet centerline location, have been reported in the literature for various configu-
rations other than the one analyzed here (Yarin, 1993; Kawano et al., 1997), measurements are
currently not available for the instantaneous local thickness of the sheet even though current
developments in diagnostic techniques are promising (Bachalo, 2000; Cousin et al., 2000). The
knowledge of the thickness variation is essential to predict breakup. State-of-the-art measuring
techniques do not allow comprehensive identification of the structure of swirling conical sheets.
Such information was provided by the current investigation.

3.5. Swirl- and pressure-stabilized annular films

The nonlinear distortion and breakup of a nondiverging swirling annular liquid film with an-
gular velocity vp), = \/ 2/[We(1 — ArZ/(473))] at the nozzle exit has been compared with the

nonlinear breakup of the similar sheet but without swirl and stabilized (in its undisturbed annular
configuration) with a constant gas-core pressure. The latter case has already been considered by
the authors elsewhere (Mehring and Sirignano, 2000b). Both cases are unstable by linear analysis.
Initial conditions for the case with swirl are given by the steady-state solution with boundary
conditions by = 1,b, = 0,b3 = 0,b, = 10, b5 = 0 and the prescribed angular velocity. The steady-
state solution is independent of the mass flow rate in this case.

Fig. 7 illustrates both solutions at the time where sheet breakup occurs. The bubble formation
observed for ‘pressure-stabilized’ nonswirling annular sheets (Mehring and Sirignano, 2000b), is

10 e ALAUL

0 1 1 1
0 250 500 750 1000
Z*

Fig. 7. Annular dilationally modulated nondiverging liquid film stabilized (in its undisturbed configuration) by a
constant gas-core pressure and no swirl (dotted), or by a constant swirl but zero gas-core pressure (solid). The semi-
infinite sheet is initially undisturbed [We = 150,75 = 10, T, = 100, 4. = 0.02]. Solutions are displayed at time " = T,
when breakup occurs, i.e., at T, = 465.1 (swirl-stabilized case) and at T, = 856.6 (pressure-stabilized case).
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not observed for the ‘swirl-stabilized’ sheet. Also, as expected from linear analysis, sheet-breakup
length and breakup times are considerably shorter in the case with swirl than in the case without
swirl. For the swirling sheet, sheet breakup occurs at time ¢ = 465.1 at a distance z* = 455.85
from the nozzle exit. In the ‘pressure-stabilized’ case, sheet breakup occurs at * = 856.6 with a
breakup length of /, = 849.45.

3.6. Three-dimensional effects on swirling annular and conical films

The authors have completed three-dimensional simulations for two of the base cases (i.e. for
swirling annular sheets) described above (i.e. base case 1 for dilational modulation and base case 3
for sinuous modulation) as well as for the corresponding conical configurations with swirl number
k =10.

Upon the original axisymmetric disturbances of the axial or transverse velocity components,
circumferential disturbances were imposed in the same variable using a three-dimensional analysis
and computational code. Modulations in the circumferential direction were specified in order to
generate standing or travelling dilational or sinuous waves. The ratio between the amplitude of
the axisymmetric disturbance and the superimposed three-dimensional modulation was varied
between 0 and 1. For the traveling-wave case several different wave velocities were considered.
Note that, sheet distortion is only predicted up to the point when the sheet thickness reaches zero
at some location.

Distortion of the considered annular and conical sheets remained predominantly axisymmetric
for cases where the ratio of the amplitude of the imposed circumferential disturbance to the
axisymmetric disturbance amplitude was 0.1 and smaller. Even at a ratio 0.5, the characteristics of
the sheet distortion remained essentially axisymmetric as shown in Fig. 8. If the amplitudes of
axial and circumferential disturbance were comparable, sheet distortion was truly three-dimen-
sional. The simulations also indicated that wave interaction between axial and circumferential
waves is larger if the wave-velocities in the axial and circumferential direction are of the same
order. Also, three-dimensional solutions for sheets with axisymmetric modulations only, remained
axisymmetric throughout the simulations indicating that small perturbations due to numerical
error did not result in a three-dimensional instability.

The observed dominance of the axisymmetric mode disturbance in these cases might be two-
fold. Firstly, the growth rate of excited unstable circumferential modes is too small to become
important before the “large” amplitude axisymmetric sheet disturbances cause the sheet to break.
Secondly, the excited circumferential modes are not unstable and the amplitudes of the waves in
the circumferential direction remain moderate if no energy transfer from the axial waves occurs.

This investigation clearly indicates that there exists a domain in parameter space where pre-
dominantly axisymmetric modulations imposed at the nozzle exit will in fact result in a pre-
dominantly axisymmetric distorting sheet, with only minor effects of existing circumferential sheet
disturbances. In fact, the prescribed situation is of practical interest, since hardware disturbances
such as the axial dislocation of a swirl cup will generate an axisymmetric sheet modulation at the
nozzle exit. Also, axial pressure fluctuations within the atomizer often might be considered to be
uniform across the atomizer, leading to the generation of axisymmetric fluctuations in the axial
fluid velocity which generates axisymmetric dilational distortions on the liquid sheet. The de-
scribed observations only refer to the sheet distortion up to the point when the sheet ruptures



1732 C. Mehring, W.A. Sirignano | International Journal of Multiphase Flow 27 (2001) 1707-1734

Fig. 8. Snap-shot of swirling annular liquid film sinusoidally modulated at the nozzle z* = 0 according to base case 3
[We = 1000,7, = 10, T, = 25,4, = 0.1,00. = n/2, T, = T, /4] and with superimposed modulation of the transverse sheet
velocity in the circumferential (0°-) direction, i.e. 7" (x* = 0,0%,#) = 4,[1 — e™"/5]sin(2nt* /T, + &) [1 + 0.5cos(30" —
2nt*/T,)] with T,, = 21 and 0 < 0" < 27. (Only the outer sheet interface is shown.)

locally for the first time. For harmonic three-dimensional modulations rupture might occur si-
multaneously at various points of the sheet at the same downstream distance. Contraction of the
free rim(s) generated by the rupture(s) could be followed by more distinctly three-dimensional
behavior.

4. Conclusions

A reduced dimension analysis is presented for the analysis of nonlinear dilational (symmetric)
and sinuous (anti-symmetric) capillary waves on swirling axisymmetric thin inviscid liquid sheets
exiting from a nozzle or atomizer into a void. New results obtained from the present analysis are
the identification of the sheet distortion and breakup characteristics in the presence of sheet di-
vergence due to swirl including the change of sheet breakup length.

Nonlinear solutions to the pure boundary-value problem with time-independent boundary
conditions at the nozzle exit are obtained by using an explicit, fourth-order Runge-Kutta method.
Various geometrical shapes are obtained depending on the mass flow rate, angular momentum,
Weber number and the boundary conditions imposed on sheet thickness, radial sheet-centerline
location, as well as their derivatives, at the nozzle exit. For the considered diverging ‘conical’
sheets, the steady-state solutions are recovered by numerical solution of the transient problem and
by careful consideration of the necessary boundary conditions, the latter employing information
on the propagation characteristics of wave groups or energy on these sheets.
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Film blowing (i.e. the radial expansion of an infinite annular sheet) from excess swirl has also
been analyzed identifying an absolutely stable equilibrium point.

The nonlinear breakup of initially steady ‘conical’ sheets due to modulations of the axial and/or
transverse sheet velocity at the orifice has been studied numerically. For the cases analyzed, sheet
thinning due to sheet divergence does not fundamentally change the characteristics of the non-
linear sheet breakup observed for swirling but nondiverging annular sheets. Nonlinear effects lead
to the formation of fluid rings with thinner shells connecting them. However, sheet thinning due to
sheet divergence affects sheet-breakup lengths and breakup times. Comparison between annular
sheets with swirl in a surrounding void and annular sheets with no swirl but nonzero gas-core
pressure shows that swirl can significantly reduce nonlinear sheet-breakup lengths and breakup
times. The comparison also suggests that: (1) the formation of bubbles between fluid rings ob-
served for ‘pressure-stabilized” annular sheets can be attributed to the assumption of a constant
gas-core pressure in this case and (2) even without the aid of aerodynamic effects, swirling annular
sheets will break faster than nonswirling ones. Three-dimensional simulations have shown that the
axisymmetric mode of sheet distortion can dominate over existing low and moderate amplitude
three-dimensional modes.
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